Cortical representation of interaural time difference in congenital deafness.
نویسندگان
چکیده
Binaural cues are required for localization of sound sources. In the present paper, representation of binaural cues has been investigated in the adult auditory cortex. Hearing and congenitally deaf cats were stimulated through binaural cochlear implants and unit responses were collected in the subregion of field A1 showing the largest amplitudes of evoked local field potentials. Sensitivity to interaural time difference (ITD) in the range from -600 to 600 micros was tested at intensities of 0-10 dB above hearing threshold. Template ITD functions were fitted to the data and parameters of ITD functions were compared between deaf and hearing animals. In deaf animals, fewer units responded to binaural stimulation, and those that responded had smaller maximal evoked firing rate. The fit to the template ITD functions was significantly worse in deaf animals, and the modulation depth in ITD functions was smaller, demonstrating a decrease in ITD sensitivity. With increasing binaural levels, hearing controls demonstrated systematic changes in ITD functions not found in deaf animals. Bimodal responses, likely related to precedence effect, were rare in deaf animals. The data demonstrate that despite some rudimentary sensitivity to interaural timing, cortical representation of ITDs is substantially altered by congenital auditory deprivation.
منابع مشابه
Monaural Congenital Deafness Affects Aural Dominance and Degrades Binaural Processing
Cortical development extensively depends on sensory experience. Effects of congenital monaural and binaural deafness on cortical aural dominance and representation of binaural cues were investigated in the present study. We used an animal model that precisely mimics the clinical scenario of unilateral cochlear implantation in an individual with single-sided congenital deafness. Multiunit respon...
متن کاملReliability of Interaural Time Difference-Based Localization Training in Elderly Individuals with Speech-in-Noise Perception Disorder
Background: Previous studies have shown that interaural-time-difference (ITD) training can improve localization ability. Surprisingly little is, however, known about localization training vis-à-vis speech perception in noise based on interaural time difference in the envelope (ITD ENV). We sought to investigate the reliability of an ITD ENV-based training program in speech-in-noise perception a...
متن کاملDistribution of interaural time difference in the barn owl's inferior colliculus in the low- and high-frequency ranges.
Interaural time differences are an important cue for azimuthal sound localization. It is still unclear whether the same neuronal mechanisms underlie the representation in the brain of interaural time difference in different vertebrates and whether these mechanisms are driven by common constraints, such as optimal coding. Current sound localization models may be discriminated by studying the spe...
متن کاملHigher-order auditory areas in congenital deafness: Top-down interactions and corticocortical decoupling
The theory of predictive coding assumes that higher-order representations influence lower-order representations by generating predictions about sensory input. In congenital deafness, one identified dysfunction is a reduced activation of deep layers in the auditory cortex. Since these layers play a central role for processing top-down influences, congenital deafness might interfere with the inte...
متن کاملEnvelope-based inter-aural time difference localization training to improve speech-in-noise perception in the elderly
Background: Many elderly individuals complain of difficulty in understanding speech in noise despite having normal hearing thresholds. According to previous studies, auditory training leads to improvement in speech-in-noise perception, but these studies did not consider the etiology, so their results cannot be generalized. The present study aimed at investigating the effectiveness of envelope-b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2010